(SU@) fviplet)
Extended Higgs Sector from

GUTs and EWSB

Mu-Chun Chen
Brookhaven National Laboratory

17th Workshop on Weak Interactions and Neutrinos

Lake Geneva, Wisconsin, Oct 6-11, 2003

The plan:

(i) motivation

(ii) extended Higgs sector from GUTSs and SB
(iii) EW constraints

(iv) what is the triplet Higgs good for

(v) signatures

(vi) open questions
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Why Extended Higgs Sector?

SM Higgs is predicted to be light, yet we have not found
it!

There are several ways to evade the lower bound from
LEP data: (Peskin and Wells, 2001)

AT >0, 4SO
¢ Specific low energy effective models that have been
looked at

- AT >0
* 2 Higgs doublets (Chankowski et al)
+ 4th generation (Dobrescu and Hill; He et al; ...)

- AS5<0

= extra singlet Majorana fermions (Gates and Turn-
ing)

* extra SU(2) x SU(2) multiplets (Dugan and Ran-
dall)
e extended scalar sector:
— 4D GUT Models: lots of exotic scalars
— GUTs in higher dimensions

Orbifold boundary conditions can only break non-
abelian symmetry: left over U(1)'s



gauge symmetry breaking above EW scale =
by orbifold boundary conditions

EWSB = by conventional Higgs mechanism;
dynamical SB

= much simpler Higgs sector compared to con-
ventional 4D GUT models

— Little Higgs Models:
Higgs as a pseudo-Goldstone boson

Littlest Higgs Model:  SU(5)/50(5)
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Unification can also be achieved without SUSY by adding
the following choices of Higgs representations Nry to
the SM

(J. Gunion, hep-ph/0212150)

Nijppa Nijas Noz Noa Nip Nz au(M:) Mg (GeV)

1 0 0 2 0 0 0106 40x10'4
1 0 4 0 0 1 06112 Tirxw™
B 0 0 © 0 2 0130 loxme
2 0 0 0 1 O 013 1rxin™
2 0 2 0 0 2 0116 49 xi0e
2 1 0 0 0 2 0112 1¥xl0=
3 0 0 0 0 1 0105 12x3i0*™
= Jlower unification scale compared to Mgur ~ 2 X

10'%GeV in typical SUSY GUT scenario
= proton decay NOT a problem, as there are NO X, Y

gauge bosons, if not imbeded into a single gauge group
(as in some string models)

Nontheless, no predictivity Il



Extended Higgs Structure from GUT Models
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Left-Right Symmetric Models: SU(2), x SU(2)gr x

U(l)s-
(1)s-L e - b o Re ~ (0, 2)

Typically 2, ~(2.0), Le~C02)
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1 bi-doublet ® = ( A 12 ) ~(2,2)
7 95

(a#afa?_) ~(3,1)

2 complex triplets 4
At (=2)

A )
— Symmetry breaking:

AR

(aftafag) ~,3)

SU(2)L x SU(QDr x UV -1 X~ SU(2)L xU(1)y
S i
— Mass Spectrum:
A > » Vsw |, Me,Mug ~ Uy' - heavy
Ma, ~ Ma. ~ tha
— Gauge coupling constant unification??

require other matter fields at intermediate scale
Lindner and Weiser, 1996

need extra dimensions Perez-Lorenzana, Ponce, Zepeda,
1999: Perez-Lorenzana and Mohapatra, 1999



e SO(10) Models:

Minimal Higgs Sector (Gio — G224 — Ga21)

10 = (L1&+(221)
16 = (2,1,4)+(1,2,4)
45 = (3,1,1)+(2,2,6) +(1,1,15) +(1,3,1)
54 = (1,1,1)+(2,2,6) +(1,1,20) +(3,3,1)

For Majorana masses of vp:
126 (3,1,10) + (1,3,10) + (2,2,15) + (1,1,6)
N

Lots of exotic stuff!! They must be heavy, other-
wise could lead to bad consequences, €.g. proton
decay mediated by color triplet Higgsino (dim-5 op-
erator) in SUSY SO(10) — "doublet-triplet splitting
problem” :

(MS)SM Higgs doublet(s): linear combination(s) of
SU(2) doublet components in 10, 16, and/or 126

The bottom line is:

Non-SUSY GLITs: can have light scalar fields in addition
to the SM Higgs: nontheless predict low unification scale

SUSY GUTs: to preserve unification, require all but
MSSM Higgs doublets heavy ~ Mg

From now on, concentrate on light Triplet Higgs and
the Left-Right Symmetry Group



EW ision Const

Oblique Corrections:
45262 2 — g2
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Very Model Dependent. Here are two examples:

e SM with a real SU(2) Triplet Higgs (Y = 0)
(Blank and Hollik, 1998; Forshaw et al, 2001, 2003)

The Lagrangian:

J

i
T
hl B

£ = DA + Z|DAP ~ Vo(h, 8) , 4

The scalar potential is
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M = AU n

Mye » M = Ay {J‘?E, [s-n p tstodiall  SYmm
: Ans toued,
-I':.-hl.-!' "."I"-diu Tﬂ.ﬂt - E'I"Lr
at tree level:
2 2 2
M“. =i(u?+4ufﬂ}1 ME =&U2
4 ) 4
Thus the model predicts
4v? 1
tree 1,0
= 1 — > 1
# . v2 cos?fd

A = mixing angle between the charged components
of the doublet and the triplet

at one-loop:

ASt = 0,(Y =0)
1 1 m:+m ?mnm m2

&Ttri - b ! | 0
8n2s2c2° M2  M2(m3 —m2) n( }l
1 1 {am)*

6msc2 M2
SM one-loop contributions:

2 2 2 =
pHigos = 22— Thin( T ) i (kY
li‘EneratE.r:-'2 M2 - M2c2 —mi M2
~ —-In{ )

The effects of the triplet contributions > 1 ( tree leves )

= making heavy SM Higgs possible!

For all EW precision observables: (Blank & Hollik)
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Predictions for all observables coincide with SM pre-
dictions, which fully agree with experiment except for
R, and A%

Both models show similar deviation from data

Require guartic coupling constants for both SM Higgs
and the triplet perturbative up to A ~ 1TeV:

my, < 520GeV, (A1]h]%)
ma < 550GeV, (3x20h?|A)?)

To pinpoint the mass of the SM Higgs via the indirect
method: need to determine S independently of T' better
than £0.1 (Rosner, 2002)

4.



¢ Left-Right Symmetric Model
(Jegeriehner et al, 2000)

SU(2) x SU(2)r x U()p-1

model contains & complex SU(2) Triplet Higgses
(Y = 2) and heavy gauge bosons, 4 bi-doublet

e 5’)
(i 7 = (‘fwﬂfﬁ. 0
3 i . et Kaz O
ey ( : “w:ﬁ>

at tree level: < A >= v 1

2 2 + 2
My =2 +20} 1), Mz= = (v +4v3_,)
Thus the model predicts
v 4 2v2 _
ptree R 1,-1 <1

T2 4 411'{_1



/6,

at one loop:

Recall that in SM, top quark loop contribute to
g parameter

In this model, this leading m; contribution is sup-
pressed by heavy W2 mass

=
2
T = —c—“’&p
== BJ-GFL'E {C‘ﬁ } M]in m:'."
82 v Eh - Mg, :

For M,, = 400GeV, the leading top quark contribu-
tion in this model is smaller than the In(m]) con-
tribution in SM!!

Prediction for top quark mass from oblique correc-
tions is lost!!

Contribution from lightest Higgs: suppressed by
heavy gauge boson masses: :

Vv2Gp M2 c2 MZ 1
g i (ME,?BE{ -20) + 35 M? 2_

4872 (4% 1))

= model cannot be trivially ruled out!!



M

Unitarity Bound on Higgs Mass

Require Higgs self-coupling perturbative up to unifica-
tion scale:

e With an additional gauge singlet:
Tobe and Wells, 2002

Non-SUSY case:

sin6, =1/4 = A =3.8TeV, m, <460 GeV
sin?6, = 3/8 = A~10"GeV, m;, < 200GeV
A= My = m,<180Gev
SUSY case:

sin?@, =1/4 = A =37 TeV, m;, < 350 GeV
sin20, =3/8 = A~2x10'°GeV, m); < 120GeV

e MSSM with an additional triplet:
Espinosa and Quiros, 1998

A~ 10Y"GeV, my) < 205 GeV

¢ SM with an additional real triplet (Y=0):
Forshaw et al, 2003

A ~1TeV, my < 520 GeV



What is the SU(2) Triplet Higgs Good For?

¢ Neutrinc Masses

see-saw mechanism:
SO(10) B SU(2), x SU(2)r x U(1)p_¢

=4 SU2)xUQ)y = ( g fEH )

v, ) for  hvew
sy U(nm::.( il

— Type I see-saw mechanism: without parity

{H> : “H2
“" Y Va ,.'r
s R
$h >
0 M e a
( MLr Mfz; ) ’ AT = - MiaMRMLn

— Type 1l see-saw mechanism: with parity
if there is parity in the model, e.g. Left-Right mod-
els, SO(10) models

<UL EH> <M

i N W Fa -'!f{"r;_:l' £0
N g L., s
% ; U,
My, Mg eff — —1 24T
(Mm e 7 ik M:—Rﬂ{HRMLR
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¢ Bi-Large Mixing Angles

— Family Symmetry: Type I see-saw mechanism
Typically give hierarchical neutrino masses

mh } ml.!"]- } mtﬁ

— Renormalization Group Enhancement

at GUT scale: starting with leptonic mixing ma-
trix = Veoiar, Nearly degenerate neutrino masses,
and identical neutrino Majorana masses

These boundary conditions can be satisfied, if

Mpp ~ 1 -vg = degenerate masses
MpgMppMiLg = mixing matrix ~ Voga

— Minimal SO(10) Model with approximate b — 7
unification

both LH and RH Majorana mass terms for neu-
trinos have identical couplings (thanks to the
parity)

for small tan 3: atmospheric maximal mixing a
consequence of b — v unification

many natural scenarios require Typy Il see-saw mech:-
anism thus the SU(2) triplet A; having non-zero
VEV

(For a review on neutrino masses in SO(10) models, see e.g. M.-C.
Chen and K.T. Mahanthappa, hep-ph/0305086)



e Leptogenesis through the decay of the triplet Higgs
Ma and Sarkar, 1998

First generate lepton Asymmetry: Interference be-
tween the CP violating decay of At+ — [t at
tree level and one-loop:

ﬂ-:i* E‘I‘ d‘:"’ I'lf ﬂ?’<-ﬂr
{ “'”< Er + 3 '(_EE' PR
L is then converted to B due to EW anomaly

Strong CP problem, SUSY CP problem:
(Babu, Dutta, Mohapatra, Rasin, Senjanovic)

SUSY Left-Right Model:
© = © 4 Arg det(M,M,) — 3Arg(M;)

©: coefficient of F,,F" term (P violating)
P is invariant above scale M = © = 0 above Mg

Left-Right Symmetry =

m; = real aboveMp
Yukawa coupling constants hermitian

© = 0 above Mg
Below My = RG corrections must be small so that

© is kept small

<



Signatures of the Triplet Higgs
(Gunion, Huitu, Maalampi, Pietila, Raidal, Cuypers, o

Tree level H*W¥Z vertex: generally present in mod-
els with triplet and/or higher Higgs representations

Z = H-H'H#', '-."J-MJ‘ -3 H“"r 4 cuvrent boinal
Mg~ > Wb CreN
e neutral sector

e singly charged sector

e doubly charged sector possible decay channels:

AH et
ATt 5 wtw?t suppressed as < AL ><€ 1
ATt o5 htWwtT  suppressed by phase space

— Lepton number violation (AL = 2) processes

fijLILGT:&LLj,L =
1
filAY v LvjL + Eﬂf[m‘.xﬁj.:. + eivit] + O eiLe; L)

'l._.-—l-“'_.-—"'
V- wnasd

leads to AL = 2 decay couplings
e e =40, T T .
Currently we do not have any limit on f.,

strongest constraints are for f.. and f,.: (ma
in GeV)



+ from Bhabha scattering
|feel® < 107°m}

+ to avoid giving wrong sign contribution to

|fuul? < 5 x 107"m3%
+ from muonium-anti-muonium conversion:

| fee funl < ID_?"‘?&

some weaker constraints:
* frompuy —eeet

|feueel < 1071 mQ

F<AL>=0 = I} small
possibly very large s-channel e"e™ and pu~u~ pro-
duction rates (Gunion, 1998)

can probe very small fee, fu: ~ 1071% at e e
collider with L = 300fb}

= relevant range for see-saw
= neutrino physics at the colliders



